AP Calculus BC

Review - FTC and Separable Differential Equations FRQ

1. 2009 BC4

Consider the differential equation $\frac{dy}{dx} = 6x^2 - x^2y$. Let y = f(x) be a particular solution to this differential equation with the initial condition f(-1) = 2.

Find the particular solution y = f(x) to the given differential equation with the initial condition f(-1) = 2.

2. 2007 BC4

Let f be the function defined for x > 0, with f(e) = 2 and f', the first derivative of f, given by $f'(x) = x^2 \ln x$.

- (a) Write an equation for the line tangent to the graph of f at the point (e, 2).
- (b) Is the graph of f concave up or concave down on the interval 1 < x < 3? Give a reason for your answer.
- (c) Use antidifferentiation to find f(x).

3. 2006BBC5

Let f be a function with f(4) = 1 such that all points (x, y) on the graph of f satisfy the differential equation

$$\frac{dy}{dx} = 2y(3-x).$$

Find y = f(x).

4. 2002B BC4

The graph of a differentiable function f on the closed interval [-3,15] is shown in the figure above. The graph of f has a horizontal tangent line at x=6. Let

- (b) On what intervals is g decreasing? Justify your answer.
- (c) On what intervals is the graph of g concave down? Justify your answer.
- (d) Find a trapezoidal approximation of $\int_{-3}^{15} f(t) dt$ using six subintervals of length $\Delta t = 3$.

5. 2003BBC5

Let f be a function defined on the closed interval [0,7]. The graph of f, consisting of four line segments, is shown above. Let g be the function given by $g(x) = \int_2^x f(t) dt$.

- (a) Find g(3), g'(3), and g''(3).
- (b) Find the average rate of change of g on the interval $0 \le x \le 3$.
- (c) For how many values c, where 0 < c < 3, is g'(c) equal to the average rate found in part (b)? Explain your reasoning.
- (d) Find the x-coordinate of each point of inflection of the graph of g on the interval 0 < x < 7. Justify your answer.</p>

Graph of f

AP Calculus BC

Review - FTC and Separable Differential Equations FRQ

1. 2009 BC4

x2(6-4) Consider the differential equation $\frac{dy}{dx} = 6x^2 - x^2y$. Let y = f(x) be a particular solution to this differential equation with the initial condition f(-1) = 2.

Find the particular solution y = f(x) to the given differential equation with the initial condition f(-1) = 2.

2. 2007 BC4

Let f be the function defined for x > 0, with f(e) = 2 and f', the first derivative of f, given by $f'(x) = x^2 \ln x.$

- (a) Write an equation for the line tangent to the graph of f at the point (e, 2).
- (b) Is the graph of f concave up or concave down on the interval 1 < x < 3? Give a reason for your answer.
- (c) Use antidifferentiation to find f(x).

(c) Use all differentiation to find
$$f(x)$$
.

(d) Use all differentiation to find $f(x)$.

(e) Use all differentiation to find $f(x)$.

(f) Use all differentiation to find $f(x)$.

(g) $f(x) = e^{2x}$

(g) $f(x) = e^{2x$

3. 2006BBC5

Let f be a function with f(4) = 1 such that all points (x, y) on the graph of f satisfy the differential equation

$$\frac{dy}{dx} = 2y(3-x).$$

Find
$$y = f(x)$$
.

and
$$y = f(x)$$
.

$$\frac{1}{y} dy = 2(3-x) dx \qquad | = Ce^{6(4)-42} \qquad y = e^{-\frac{9}{2}} e^{6x-x^2}$$

$$| \ln |y| = 2(3x-\frac{1}{2}x^2) + C \qquad | e^{-8} = C \qquad | y = e^{-\frac{9}{2}} e^{6x-x^2}$$

$$| \ln |y| = 6x-x^2 + C \qquad | e^{-8} = C \qquad | y = e^{-\frac{9}{2}}$$

$$| \ln |y| = 6x-x^2 + C \qquad | e^{-8} = C \qquad | y = e^{-\frac{9}{2}}$$

4. 2002BBC4

The graph of a differentiable function f on the closed interval [-3,15] is shown in the figure above. The graph of f has a horizontal tangent line at x=6. Let

(c) On what intervals is the graph of
$$g$$
 concave down? Justify your answer.

(d) Find a trapezoidal approximation of
$$\int_{-3}^{15} f(t) dt$$
 using six subintervals of length $\Delta t = 3$.

a)
$$g(u) = 5 + 5_{6} c(t) dt = 5$$

c) $g'' = f' < 0$ on $(u_{1} co)$
 $g'(u) = f(u) = 3$

d) $\frac{1}{2}(3)(-1 + 2(0) + 2(1) + 2(3) + 2(1) + 2(0) + -1)$
 $g''(u) = f'(u) = 0$
 $= \frac{3}{2}(8)$

b) $g' = f < 0$ on $(-\infty, 0) \lor (12, 00)$
 $= 12$

5. 2003B BC5

Let f be a function defined on the closed interval [0,7]. The graph of f, consisting of four line segments, is shown above. Let g be the function given by $g(x) = \int_{a}^{x} f(t) dt$.

(a) Find
$$g(3)$$
, $g'(3)$, and $g''(3)$.

b) $g(3)-g(0) = \frac{3-(-4)}{3} = \frac{7}{3}$

(b) Find the average rate of change of g on the interval
$$0 \le x \le 3$$
.

(c) For how many values
$$c$$
, where $0 < c < 3$, is $g'(c)$ equal to the average rate found in part (b)? Explain your reasoning.

(d) Find the x-coordinate of each point of inflection of the graph of g on the interval 0 < x < 7. Justify your answer.

Graph of f