AP Calculus BC

Review - FTC and Separable Differential Equations FRQ

1. 2009 BC4

Consider the differential equation $\frac{d y}{d x}=6 x^{2}-x^{2} y$. Let $y=f(x)$ be a particular solution to this differential equation with the initial condition $f(-1)=2$.

Find the particular solution $y=f(x)$ to the given differential equation with the initial condition $f(-1)=2$.

2. 2007 BC4

Let f be the function defined for $x>0$, with $f(e)=2$ and f^{\prime}, the first derivative of f, given by $f^{\prime}(x)=x^{2} \ln x$.
(a) Write an equation for the line tangent to the graph of f at the point $(e, 2)$.
(b) Is the graph of f concave up or concave down on the interval $1<x<3$? Give a reason for your answer.
(c) Use antidifferentiation to find $f(x)$.

3. 2006B BC5

Let f be a function with $f(4)=1$ such that all points (x, y) on the graph of f satisfy the differential equation

$$
\frac{d y}{d x}=2 y(3-x) .
$$

Find $y=f(x)$.

4. 2002B BC4

The graph of a differentiable function f on the closed interval $[-3,15]$ is shown in the figure above. The graph of f has a horizontal tangent line at $x=6$. Let
$g(x)=5+\int_{6}^{x} f(t) d t$ for $-3 \leq x \leq 15$.
(a) Find $g(6), g^{\prime}(6)$, and $g^{\prime \prime}(6)$.

(b) On what intervals is g decreasing? Justify your answer.
(c) On what intervals is the graph of g concave down? Justify your answer.
(d) Find a trapezoidal approximation of $\int_{-3}^{15} f(t) d t$ using six subintervals of length $\Delta t=3$.

5. 2003B BC5

Let f be a function defined on the closed interval $[0,7]$. The graph of f, consisting of four line segments, is shown above. Let g be the function given by $g(x)=\int_{2}^{x} f(t) d t$.
(a) Find $g(3), g^{\prime}(3)$, and $g^{\prime \prime}(3)$.
(b) Find the average rate of change of g on the interval $0 \leq x \leq 3$.
(c) For how many values c, where $0<c<3$, is $g^{\prime}(c)$ equal to the average rate found in part (b)? Explain your reasoning.
(d) Find the x-coordinate of each point of inflection of the graph of
 g on the interval $0<x<7$. Justify your answer.

AP Calculus $B C$

Review - FTC and Separable Differential Equations FRQ

1. 2009 BC 4

$$
x^{2}(6-y)
$$

Consider the differential equation $\frac{d y}{d x}=6 x^{2}-x^{2} y$. Let $y=f(x)$ be a particular solution to this differential equation with the initial condition $f(-1)=2$.
Find the particular solution $y=f(x)$ to the given differential equation with the initial condition $f(-1)=2$.

$$
\frac{1}{6-y} d y=x^{2} d x
$$

$-\ln |6-y|=\frac{1}{3} x^{3}+c$
$\ln |6 y|=-\frac{1}{3} x^{3}+C$

$$
6-y=C e^{-1 / 3 x^{3}}
$$

$$
2=C e^{1 / 3}+6
$$

2. 2007 BC 4

Let f be the function defined for $x>0$, with $f(e)=2$ and f^{*}, the first derivative of f, given by $f^{\prime}(x)=x^{2} \ln x$.
(a) Write an equation for the line tangent to the graph of f at the point $(e, 2)$.
(b) Is the graph of f concave up or concave down on the interval $1<x<3$? Give a reason for your answer.
(c) Use antidifferentiation to find $f(x)$.
a) $f^{\prime}(e)=e^{2}$
b) $f^{\prime \prime}=x^{2} \cdot \frac{1}{x}+\ln x \cdot 2 x$
f is concave aron
C) $\int x^{2} \ln x d x \quad u=\ln x \quad d v=x^{2}$
$y-2=e^{2}(x-e)=x+2 x \ln x=0$ on $\left(0, e^{-11}\right)$ since
$=x(1+2 \ln x)=0 \quad$ file.

$$
\frac{1}{3} x^{3} \ln x-\frac{1}{3} \int x^{2} d x
$$

$$
\frac{1}{3} x^{3} \ln x-\frac{1}{9} x^{3}+c
$$

3. 2006B BC5

Let f be a function with $f(4)=1$ such that all points (x, y) on the graph of f satisfy the differential equation

$$
\frac{d y}{d x}=2 y(3-x) .
$$

Find $y=f(x)$.

$$
\begin{aligned}
& \frac{1}{y} d y=2(3-x) d x \\
& \ln |y|=2\left(3 x-\frac{1}{2} x^{2}\right)+c \\
& \ln |y|=6 x-x^{2}+c
\end{aligned}
$$

$$
\begin{aligned}
& 1=C e^{6(4)-4^{2}} \\
& 1=C e^{8} \\
& e^{-8}=c
\end{aligned} \quad y=e^{-8 \cdot e^{6 x-x^{2}}} \quad \begin{aligned}
& y=e^{6 x-x^{2}-8}
\end{aligned}
$$

The graph of a differentiable function fon the closed interval $(-3,15)$ is shown in the figure above. The graph of f has a horizontal tangent line at $x=6$. Let $g(x)=5+\int_{6}^{\pi} f(t) d t$ for $-3 \leq x \leq 15$.
(a) Find $g(6), g^{\prime}(6)$, and $g^{\prime \prime \prime}(6)$.

(b) On what intervals is g decreasing? Justify your answer.
(c) On what intervals is the graph of g concave down? Justify your answer.
(d) Find a trapezoidal approximation of $\int_{-3}^{15} f(t) d t$ using six subintervals of length $\Delta t=3$.
d) $g(6)=5+\int_{6}^{6} f(t) d t=5$
c) $g^{\prime \prime}=f^{\prime}<0$ on $(6, \infty)$
$g^{\prime}(6)=f(6)=3$
d) $\frac{1}{2}(3)(-1+2(0)+2(1)+2(3)+2(1)+2(0)+1)$
$g^{\prime \prime(}(b)=f^{\prime}(6)=0$
$=\frac{3}{2}(8)$
b) $g^{\prime}=f<0$ on $(-\infty, 0) p(12,0)$
$=12$

5. 2003B BC5

Let f be a finction defined on the closed interval [0,7]. The graph of f consisting of four line segments, is shown above Let g be the function given by $g(x)=\int_{2}^{T} f(t) d t$.
(a) Find $g(3), g^{\prime}(3)$, and $g^{\prime \prime}(3)$.
(b) Find the average rate of change of g on the interval $0 \leq x \leq 3$.
(c) For how many values c, where $0<c<3$, is $g^{\prime}(c)$ equal to the average rate found in part (b)? Explain your reasoning.
(d) Find the x-coordinate of each point of inflection of the graph of
 g on the interval $0<x<7$. Justify your answer.
a) $g(3)=S_{2}^{3} f(t) d t=\frac{1}{2}(6)=3$
c) $g^{\prime}(c)=f(c)=7 / 3$ RT
Two vonues.
$g^{\prime}(3)=f(3)=2$
d) $g^{\prime \prime}=f^{\prime}$ cuanoes sibn AT $x=2,5$.
$g^{\prime \prime}(3)=f(3)=-2$
b) $\frac{g(3)-g(0)}{3-0}=\frac{3-(-4)}{3}=\frac{7}{3}$

